
Elements of Boolean Algebra

Intended as a Resource for Electrical Engineers and Other

Practitioners of the Boolean Arts, 2nd ed.

James M. Cargal

What is Known

It is hoped that you have been exposed to Boolean Algebra already. It is assumed that

you have been exposed to elementary set theory – to unions, intersections, complements, and

Venn diagrams (although I will not employ them here). You should have facility with truth

tables. In general we want algebraic arguments, but truth tables are always a fallback; they will

work as a last resort or as confirmation. Here we will use truth tables primarily for definitions.

But we will get surprising mileage out of them.

What is Boolean Algebra?

Boolean algebra concerns an arithmetic with just two values. These values are often

denoted by T and F, where T stands for “true” and F stands for “false”. Usually we will use 1 in

place of T and 0 in place of F. However it is very useful to remember the logical connotations of

true and false.

If we have an arithmetic of just 0s and 1s our addition and multiplication tables would be

as follows:

+ 1 0

1 ? 1

0 1 0

and

Page 2 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

1 0

1 1 0

0 0 0

That is everything is as in ordinary arithmetic except for 1 + 1. Ordinarily the answer is 2, but

we only have 0 and 1 as possible answers. So which do we take? The proper answer is: either

one. If we have 1 + 1 = 1 then we essentially are working in a Boolean Algebra, but if on the

other hand we take 1 + 1 = 0 we are working in a Boolean Ring. Both perspectives are useful

and eventually we will combine them, meaning we will have two types of addition operating

simultaneously with different notation for the two types of addition.

Boolean Functions

A Boolean function is a function on Boolean values that yields a Boolean value. In other

words, the input consists of 0s and 1s and so does the output. [I know that people tend to write

0's instead of 0s, but the apostrophe is meaningless here.] For a generic function I will use the

symbol . For example, a binary function might be written as follows: z = (x, y). However,

for binary functions I will use the usual convention of writing z = x y. Binary functions will in

fact be our main focus. Two of the most important functions will be an “and” function and an

“or” function. It can become extremely awkward to speak about, say, the and and the or

function. When speaking in the text about these functions I will use a convention of uppercase

type in a different font. For example I could write: The AND and OR functions are

commutative.

We are keenly interested in how many Boolean functions there are, and this is a fairly

easy question to answer. Consider a Boolean function of order n, meaning it has n input

variables; we could denote a generic case as . Since each input variable can1 2 3(, , ,...)nf x x x x

take on only 2 values, there are 2n possible different inputs. And for each input there are 2

2

Page 3 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

possible outputs, which means that there are such functions. We are interested in all such
 2

2
n

functions but primarily binary functions of which there are ; these we will study
2(2) 42 2 16 

in great detail. One reason we are interested in binary functions is because of disjunctive normal

form.

Boolean Algebra and Disjunctive Normal Form

Boolean algebra is often built upon three operators (functions) which we will formally

define later: AND, OR, and NOT. Typically AND is denoted by and OR is denoted by ; 

and the NOT operator which is denoted by . For example if we wanted to write “(P and Q) or

NOT P”, we would write it as . () ()P Q P  

Disjunctive normal form uses these three operators. Again, we will formally define these

operators later, so if necessary you can come back and read this section then. However, the point

of disjunctive normal form is that we can use it to express any Boolean function. Suppose, for

example, that F is a Boolean function of four Boolean variables. We can write F in terms of the

three operations, , if we simply list every combination of the four variables, say, A, B, C,

and D, that make F true. Now there are cases that might come up, but in this example
42 16

there are three ways in which F can be true. Suppose F is true if and only if:

1. A is true, B is true, C is true, and D is false, or

2. A and B are true and C and D are false, or

3. A is false, B is true, C is true, D is false.

This can be written as: :

. (, , ,) (()) (() ()) (() ())F A B C D A B C D A B C D A B C D                

It may be easier to see in the notation that we will use instead of the usual . (This is a
rude fact of Boolean algebra, there are many notational conventions. It is important to know

them all and to be able to switch between them automatically.) We will denote the operator OR

3

Page 4 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

by +, rather than by . That is, X OR Y will be written X + Y. Similarly, AND will be

represented by multiplication, rather than . That is, X AND Y will be written X Y or just XY.

NOT X will be written with an over bar as rather than ¬X. Using this notation we canX

rewrite our expression as . In principle(, , ,)F A B C D ABCD AB D BCDC A  

any Boolean function can be expressed in this way. Not only can we express any Boolean

function using just these three operators but Boolean expressions are not unique. The laws that I

am about to show you are redundant in that all of the laws can be derived from a smaller subset

of the laws. However, it is useful to list the laws as follows:

() ()

() ()

A B C A B C

AB C A BC

    


Associativity

A B B A

AB BA

  


Commutivity

()

() ()()

A B C AB AC

A BC A B A C

  
   

Distribution

A B AB

AB A B

 

 

De Morgan’s Laws

1 0

0 1





Negation

1

0

X X

X X

 
 

Identity

X X

Double Negation

1

0

X X

X X

 

 

Complementarity

4

Page 5 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

1 1

0 0

X X X

X X X

X

X

 
 
 
 

Absorption

Duality

In Boolean Algebra, not only does multiplication distribute over addition but addition

distributes over multiplication. I find this fact and the DeMorgan laws to be most useful. These

laws also show a very important characteristic – duality. In all but one case, which is self-dual,

you have two laws that are duals of one another. To get the dual of a formula one simply

exchanges the AND and OR symbols and also the 1s and 0s. When we prove a theorem in

Boolean algebra, the dual of the theorem is itself a theorem which follows from the dual of the

proof which is itself a proof. In particular the dual of a true statement is true, and that fact is very

useful.

Do not confuse duality with negation. Given the expression , its negation is A B

 which by the De Morgan Laws is . However, the dual is just . A B A B AB

 Stone’s Theorem

The reader might notice something odd. The laws just given for Boolean algebra also

hold for sets. If we take the laws above and replace + (also denoted) by and (also denoted

) by and 1 by U (for the universal set) and 0 by , then we have the laws of set theory. A

theorem by Marshall Stone says that Boolean algebra and set theory are in fact different views of

the same thing. In fact these very same laws show up in still other guises.

5

Page 6 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

1

X OR Y X XY Y

X AND Y XY

NOT X X

  


 

Boolean Real Functions

I want to show you something that is not generally mentioned in the literature. Modern

programming languages usually have a Boolean data type where in particular 1 + 1 = 1 (perhaps

expressed in another form). However, you can create such a function in ordinary algebra as

follows:

For example, in the first case, X OR Y, if either X or Y is equal to 1 then that is the output.

Otherwise the function yields 0. It follows from using disjunctive normal form that any logical

operator can be encoded with such a function. I call these “Boolean real functions” and I find

them very useful. Later when we cover all of the basic truth tables I will provide these with the

denotation: BRF.

An Example of A Truth Table

The truth table for OR is as follows:

1 0

1 1 1

0 1 0

This says that 0 + 0 is 0 (or 0 0 = 0 in the older notation) and all the other cases give you 1.

This is precisely how we use OR in real life; p OR q is true if and only if either p or q is true.

However, in this essay we are going to depart from the usual truth tables and use iconic truth

tables. For example, the truth table for OR will be given in the form:

6

Page 7 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

Name: OR

Symbol: p + q, p q

BRF: p + q p q

Here OR is a name for the function. Not all of the functions have names. + and are common

symbols for this function. Not all of the functions have symbols. p + q p q is a corresponding

Boolean Real Function (see above, if you missed this topic). We always assume that the variable

on the left is p and q is the variable on the right. There is always a Boolean Real Function, and

there is always an icon.

The Unary Function

Before enumerating our 16 binary functions, there is a terribly important function of one

variable:

Name: NOT
Symbol: ¬p , p, p

BRF: 1 p

Specifically NOT 1 = 0, and NOT 0 = 1; not true is false and not false is true.

7

Page 8 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

Degeneracy

Of the 16 binary Boolean operators, 6 are degenerate. They are in fact functions of 1

variable or are functions of no variables. They are pretentious and are trying to pass themselves

off as binary functions. They are included here for completeness.

 1.
Name: False
Symbol: 0, F
BRF: 0

2.
Name: True
Symbol: 1, T
BRF: 1

3.
Name: n/a
Symbol: n/a
BRF: p

4.
Name: n/a
Symbol: n/a
BRF: 1 p

5.
Name: n/a
Symbol: n/a
BRF: q

6.
Name: n/a
Symbol: n/a
BRF: 1 q

8

Page 9 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

And

Although there is only one AND function, I consider 4 functions in the AND class of

functions. They are:

7.
Name: AND
Symbol: p q, p q
BRF: p q

8.
Name: n/a
Symbol: n/a
BRF: p p q 

9.
Name: n/a
Symbol: n/a
BRF: q p q 

10.
Name: NOR
Symbol: p q
BRF: 1 p q p q   

These functions are, respectively, p and q; p and not q; not p and q, and not p and not q.

9

Page 10 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

;A B A B A B A B     

Or

There are also 4 functions in the OR class. However, I regard these same 4 functions as

being in the IMPLIES class. These functions are:

11.
Name: OR
Symbol: p+q, p q
BRF: p q p q  

12.
Name: IMPLIES
Symbol: p q
BRF 1 p p q  

13.
Name: IMPLIED BY
Symbol: p q
BRF: 1 q p q  
14.
Name: NAND
Symbol: p q

BRF: 1 p q 

These functions are, respectively, p or q; p or (not q); (not p) or q; and (not p) or (not q). The

function (not p) or q is better known as p implies q.. However, each OR is also an implication.

For example if we have that “A or B” is true then we know that if A is false, B must be true.

That is “A or B” is equivalent to “not A implies B.” By similar reasoning “A or B” is also

equivalent to “not B implies A.” More succinctly, I find these two identities very useful:

10

Page 11 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

Exclusive Or and Equivalence

The last two functions are a central topic of this essay. They are:

15.
Name: XOR
Symbol: p q, p q
BRF: 2p q p q  

16
Name: EQUIV
Symbol: p q, p q
BRF: 1 2p q p q   

DeMorgan’s Laws Revisited

Again, DeMorgan’s laws are amongst the most important in logic

manipulation. These laws (which I repeat here) are duals of one

another. They essentially are laws about complements.

The first law says that is AND .

The second law says that is OR .

A B AB

AB A B

 

 

11

Page 12 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

Ternary Functions and Beyond

 Of course, we can have Boolean functions of three or more variables. Consider, the

AND function. As a function of more than two variables it would probably translate to ALL_OF.

However, ALL_OF (p,q,r) or if you prefer AND(p,q,r) is equivalent to . We do not needp q r 

to group the terms because (binary) AND is associative. Similarly, OR generalized would seem

to translate to AT_LEAST_ONE_OF. In this case OR(p,q,r) is equivalent to . Againp q r 

we do need to group the terms as (binary) OR is also associative. Note that the functions

ALL_OF and AT_LEAST_ONE_OF can be defined without specifying a particular number of

variables. However, if we look at XOR (exclusive or, which we denote by) things are a little

more complex. The obvious generalization of it would be to the function EXACTLY_ONE_OF.

Note however, that EXACTLY_ONE_OF(p,q,r) is not (though XOR is alsop q r 

associative). Rather it is . Similar, problems apply to EQUIV (which wep q r pqr  

denote). Hence, generalizing to more than two variables can be tricky. However, because of

disjunctive normal form we can still rely entirely on binary functions (and NOT).

Computationally Complete Sets of Functions

Disjunctive normal form implies that we can do all of our logic functions with NOT,

AND, and OR. Hence we say that these three functions are “Computationally complete.”

However, they are not a minimal computationally complete set. By DeMorgan’s laws we have

 and . Hence, {NOT and OR} and {NOT and AND} are bothA B A B   A B A B  

computationally complete sets of functions.

It follows that NAND and NOR are each also computationally complete. In   

the case of NAND we have . Hence . A A A     A A B B A B    

12

Page 13 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

Similarly, for NOR, , and . It has been known forA A A     A A B B A B    

more than a century that these are the only functions which are computationally correct by

themselves. However, this is not correct. The problem with, say, the implication function  

is that you cannot use it to indicate NOT X. Except that you can: . Combining0X X 

this with the aforementioned fact that , we have that IMPLIES is alsoX Y X Y  

computationally complete by itself.

The reason we generally do not rely on NAND or NOR by themselves is that (as truth

tables show) neither is associative, e.g. . As for IMPLIES, it is   A B C A B C    

neither associative nor commutative. Nonetheless it is tempting to do Boolean algebra either

with just IMPLIES or with IMPLIES in conjunction with something else. Note that IMPLIES

distributes over both AND and OR. In the latter case we also have

. One last aside before going    () ()A B C A B C A B C A B C          

on: DeMorgan’s laws can be written as .
A B A B

A B A B

  

  

13

Page 14 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

More Duality

Remember duality is based upon interchanging AND and OR and also interchanging 0

and 1. Hence to find the dual of XOR we need to convert it to ANDs and ORs (perhaps by using

disjunctive normal form). We get . Its dual is . A B A B A B        A B A B  

Multiplying this out we get that the dual of is . That happens to beA B A B A B  

equivalent to equivalence itself (EQUIV) or . Note that XOR and EQUIV areA B

simultaneously duals and complements of one another. This is not generally the case. Again, the

complement of is which by DeMorgan’s laws is . However, theA B A B A B   A B

dual of is just .A B A B

Boolean Rings

It cannot be overemphasized that Boolean algebra is usually performed with AND, OR,

and NOT. There is an alternative algebra known as a “Boolean ring” (because in abstract algebra

it is what is known as a “ring”). Boolean rings have huge advantages over ordinary Boolean

algebra and commensurate disadvantages. In a Boolean ring, we rely on XOR and AND.  

NOT X is . However, I find the NOT operator useful as well, but technically we no1 X

longer need it. The laws of Boolean rings are significantly simpler than the laws of ordinary

Boolean algebra. They are:

14

Page 15 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

The Laws of Boolean Rings

() ()

() ()

A B C A B C

AB C A BC

    


Associativity

A B B A

AB BA

  


Commutativity

()A B C AB AC  
Distribution

1

0

X X

X X

 
 

Identity

0

0 0

X X

X X X

X

 
 
 

Other Identities

15

Page 16 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

Using Boolean Rings

It cannot be overstated how easy it is to work in Boolean rings, and this will be

demonstrated soon. The cost however, is that the OR function is less tractable and uses

exponentially more space. It is easy to show that andA B A A B B    

. (Here I rely on concatenation instead ofA B C A B C AB AC BC ABC        

the multiplication dot.) The general rule is that OR(A,B,...,N) is the ringsum () of all products

of the various variables which gives products in the case of n variables. The proof is easy2 1n 

enough. We can extend one of the DeMorgan laws to getA B N A B N      

This leads immediately to which translates to... ...A B N A B N      

. After multiplying out the     ... 1 1 1 1 ... 1A B C N A B C N         

right side we merely employ .1 1 0 

Before continuing it is interesting to look at one more identity. If we define the Boolean

function XOR to mean exactly one of the variables is true then as(,)XOR A B A B 

expected, but . In general XOR(A,B,...,N) is the(, ,)XOR A B C A B C ABC   

ringsum () of all odd products of the variables. For example,

. The general(, , ,)XOR A B C D A B C D ABC ABD ACD BCD       

rule can be proven fairly easily by induction.

The key to Boolean rings is that there are only two reduction rules: andX X X 

. Suppose we want to prove one of DeMorgan’s laws: . The0X X  X Y X Y  

expression on the left can be written as , but that1X Y X XY Y X XY Y       

factors into . Similarly, if we want to prove the Boolean reduction  1 1X Y X Y   

16

Page 17 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

rule , we rewrite the left side as , which then simplifies asAB A A  AB AAB A 

follows: , since . AB AAB A AB AB A A      0AB AB 

As an aside, albeit an important one, it is easy to forget that there is a more direct way of

proving a proposition such as . B can only take on two values, namely 0 and 1. InA AB A 

the first case we get , and in the second case we get . Either way we0A A  A A A 

have A and thus we are finished.

A last illustration of the difference between Boolean algebras and Boolean rings is the

following simple observation: The boolean algebra expression does not have aA X B 

unique solution for X. However, the unique solution of X in is .A X B  X A B 

Z2

As mentioned before, in a number system with just 0 and 1 where 1 + 1 = 0, we are

working with a Boolean ring. This system is usually denoted Z2 and is surprisingly important.

More generally in abstract algebra, a ring for which for all x, holds, is a Boolean ring. x x x 

From this one (additional) assumption we can easily show that multiplication is commutative and

that for all x, . However, none of this really concerns us here; it is just fodder for0x x 

mathematicians.

The Other Boolean Ring

 It does not seem to be well known that there is another Boolean ring that is dual to the

one we have been exploring. In our ordinary Boolean ring AND works as multiplication and

XOR works as addition; 0 is the additive identity and 1 is the multiplicative identity. However,

if we take the laws of boolean rings as listed above and look at the duals of the statements, we get

another set of true statements. Here we replace AND () by OR (+) and XOR () by EQUIV

() and we interchange 0 with 1. In this algebra OR is the multiplication, EQUIV is the

addition; 0 is the multiplicative identity and 1 is the additive identity. In particular note that OR

17

Page 18 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

distributes over EQUIV: . The full set of laws are exactly() () ()A B C A B A C     

as before but with the above substitutions.

The Laws of the Dual Boolean Rings

 () ()

() ()

A B C A B C

A B C A B C

    
    

Associativity

A B B A

A B B A

  
  

Commutativity

   ()A B C A B A C     

Distribution

0

1

X X

X X

 
 

Identity

18

Page 19 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

1

1 1

X X

X X X

X

 
 
 

Other Identities

The Interesting Interrelationship Between XOR and EQUIV

Of the ten non-trivial binary Boolean functions, four are associative and all four are also

commutative. These functions are AND () OR (+) XOR () and EQUIV (). We are

interested in all four of these. It seems redundant to use both XOR and EQUIV as these are

complements of one another (as well as duals). Either one provides the NOT function as

follows: . More generally if E is a Boolean expression we have1 0X X X   

. Equally useful is . Because XOR and EQUIV1 0E E E    0 1E E E   

are complementary we can go between them by using and0X Y X Y   

. 1X Y X Y   

Given that XOR and EQUIV are opposites the following derivation is surprising:

 

0

1 1

1 1

1

A B C

A B C

A B C

A B C

A B C

A B C

 
   
    
    

   

  

19

Page 20 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

A B C A B C    

As a first consequence we get . It is easy to proveA B A A B B A A B B        

by induction that and are equal when the number ofA B N   A B N  
arguments (variables) is odd and that they are complementary when the number of arguments is

even.

Another surprising derivation is:

The key observations so far:

 
 

 
 

 
 
 

 
 

1

1

0

0

1

1

1

A B C

A B C

A B C

A B C

A B C

A B C

A B C

A B C

A B C

A B C

A B C

 

   

   

  

   

   

  

   
   

   

  

1

0

A B A B

A B A B

A B C A B C

A B C A B C

   
   
    
    

20

Page 21 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

The apparent lack of parentheses in the last equation is not an accident. It is a

consequence of the prior derivations; every implied association works. As far as the second

to the last equation, both XOR () and EQUIV () are associative. My own technique for

handling a mixed statement containing just those two operations depends on the parity of the

variables. First of all remember that such a statement should not have any repeat terms

because and (these statements are duals). Any time we have two s0X X  1X X 

we can replace them with two s and vice versa. For example has two s andA B C D  

can be written . Given an expression (tied together with just s and s) thatA B C D  

has an odd number of terms, I add a term to the expression be appending either 0 or 1. For

example, can be extended as followsA B C D E    0A B C D E    

leading to or . Or the statement can be0A B C D E     A B C D E   

extended as here: leading to in which1A B C D E     1A B C D E    

case I might rewrite it as which I could have gotten immediately from theA B C D E   

given statement. So the standard format I use is generally to have all s , or all s followed by

a single . For example consider the following two expressions:

. These represent the two types of mixed XOR () and,A B C D A B C D     

EQUIV () statements. The first expression is true if exactly an odd number of variables are

True. The second expression is true if exactly an even number of variables are True.

The Combined Boolean Algebra

The combined Boolean algebra uses NOT, AND, OR, XOR, and

EQUIV. Therefore it is highly redundant. For example NOT X can be

written or or . The most important thing to remember isX 1X  0X 

distribution. AND distributes over OR and XOR, and almost over EQUIV.

21

Page 22 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

That is:

()

()

() (1) (1)

A B C AB AC

A B C AB AC

A B C A B C A B C AB AC A AB AC A

  
  
            

Similarly, OR distributes over AND and EQUIV, and almost over XOR. That

is:

()()

() () ()

() (0) (0)

() () (0) () ()

A BC A B A C

A B C A B A C

A B C A B C A B C

A B A C A A B A C A

   
     
          

         

Implication

In the combined Boolean algebra, A IMPLIES B has three principal

forms: , , and . Implication can be added directly toA B 1 A AB  A AB

the algebra in which case it is important to remember IMPLIES distributes over

AND and OR. In the latter case the identity might() ()A B C A B C    

be useful. Also, remember .0X X 

22

Page 23 of Elements of Boolean Algebra, 2nd ed. by James M. Cargal (2011, 2018)

Final Comments

There is much more to say. For example the relationship between EQUIV

and EQUAL is fascinating. However to see that they are distinct we observe that

 is true if and only if each variable is equal to one. However,1A B C  

 is true if each variable is equal to one or exactly one variable is1A B C  

true.

References

Cargal, James M. An Alternative Fault Tree Algebra. 1980. IEEE tr.

Reliability. R-29, 269-272.

Cargal, James M. Some Notes on Elementary Boolean Algebra. 1988.

International Journal of Mathematical Education in Science and

Technology. 19. 231-241.

23

